Section 4: Balanced Trees Solutions
0. The ABC's of AVL Trees
What are the constraints on the data types you can store in an AVL tree? When is an AVL tree preferred over another dictionary implementation, such as a HashMap?
1. Let's Plant an AVL Tree
Insert 10, 4, 5, 8, 9, 6, 11, 3, 2, 1, 14 into an initially empty AVL Tree.

2. MinVL Trees

aw an AVL	_ tree of h	eight 4 tha	t contains	s the minir	mum poss	sible num	ber of nodes	3 .
AVL	Trees							
ert 6. 5.	. 4. 3.	2, 1, 10	0. 9. 8	. 7 into a	n initially	empty A\	/I Tree	
J. 1 3 7 3 7	1, 3,			, , ,	,	, , ,		

4. The ABC's of B-Trees

What properties must a B-tree with ${\tt n}$ data values and known ${\tt M}$ and ${\tt L}$ have	?
Give an example of a situation that would be a good job for a B-tree. Furthermore, are there any constraints on the data that B-trees can store?	

5. Implement a B-Tree? Nah, Let's Analyze!

Given the following parameters for a B-Tree with a page size of 256 bytes:

- Key Size = 8 bytes
- Pointer Size = 2 bytes
- Data Size = 14 bytes per record (includes the key)

Assuming that M and L were chosen appropriately, what are M and L? Recall that M is defined as the maximum number of pointers in an internal node, and L is defined as the maximum number of values in a leaf node. Give a numeric answer and a short justification based on two equations using the parameter values above.

	·	

6. Oh, B-Trees

Find a tight upper bound on the worst case runtime of these operations on a B-tree. Your answers should be in terms of M, L, and n.

a)	Looking up the value of a key
b)	Inserting and deleting a key-value pair

7. B-Trees

a)	Insert the	following	into an	empty	B-Tree	with	M =	3 and	L =	3:
----	------------	-----------	---------	-------	--------	------	-----	-------	-----	----

12, 24, 36, 17, 18, 5, 22, 20

b) Delete 17, 12, 22, 5, 36

c)	 Given the following parameters for a B-Tree with M = 11 and L = 8 Key Size = 10 bytes Pointer Size = 2 bytes Data Size = 16 bytes per record (includes the key)
	Assuming that M and L were chosen appropriately, what is the likely page size on the machine where this implementation will be deployed? Give a numeric answer and a short justification based on two equations using the parameter values above.

8. It's Fun to B-Trees!

a) Insert the following into an empty B-Tree with M=3 and L=3: 3, 32, 9, 26, 6, 21, 8, 4, 5, 30, 31 b) Delete 4, 5, 21, 9, 31, 3, 26, 8